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1 Abstract

Most direct volume renderings produced today employ one-
dimensional transfer functions, which assign color and opacity to
the volume based solely on the single scalar quantity which com-
prises the dataset. Though they have not received widespread atten-
tion, multi-dimensional transfer functions are a very effective way
to extract materials and their boundaries for both scalar and mul-
tivariate data. However, identifying good transfer functions is dif-
ficult enough in one dimension, let alone two or three dimensions.
This paper demonstrates an important class of three-dimensional
transfer functions for scalar data, and describes the application
of multi-dimensional transfer functions to multivariate data. We
present a set of direct manipulation widgets that make specifying
such transfer functions intuitive and convenient. We also describe
how to use modern graphics hardware to both interactively render
with multi-dimensional transfer functions and to provide interactive
shadows for volumes. The transfer functions, widgets, and hard-
ware combine to form a powerful system for interactive volume
exploration.
Keywords: volume visualization, direct volume rendering, multi-
dimensional transfer functions, direct manipulation widgets, graph-
ics hardware

2 Introduction

Direct volume rendering has proven to be an effective and flexi-
ble visualization method for three-dimensional (3D) scalar fields.
Transfer functions are fundamental to direct volume rendering be-
cause their role is essentially to make the data visible: by assigning
optical properties like color and opacity to the voxel data, the vol-
ume can be rendered with traditional computer graphics methods.
Good transfer functions reveal the important structures in the data
without obscuring them with unimportant regions. To date, transfer
functions have generally been limited to one-dimensional (1D) do-
mains, meaning that the 1D space of scalar data value has been the
only variable to which opacity and color are assigned. One aspect
of direct volume rendering which has received little attention is the
use of multi-dimensional transfer functions.

Often, there are features of interest in volume data that are dif-
ficult to extract and visualize with 1D transfer functions. Many
medical datasets created from CT or MRI scans contain a complex
combination of boundaries between multiple materials. This situ-
ation is problematic for 1D transfer functions because of the po-
tential for overlap between the data value intervals spanned by the
different boundaries. When one data value is associated with mul-
tiple boundaries, a 1D transfer function is unable to render them in
isolation. Another benefit of higher dimensional transfer functions
is their ability to portray subtle variations in properties of a single
boundary, such as its thickness. When working with multivariate
data, a similar difficulty arises with features that can be identified
only by their unique combination of multiple data values. A 1D
transfer function is simply not capable of capturing this relation-
ship.

Unfortunately, using multi-dimensional transfer functions in vol-
ume rendering is complicated. Even when the transfer function
is only 1D, finding an appropriate transfer function is generally
accomplished by trial and error. This is one of the main chal-
lenges in making direct volume rendering an effective visualization
tool. Adding dimensions to the transfer function domain only com-
pounds the problem. While this is an ongoing research area, many
of the proposed methods for transfer function generation and ma-
nipulation are not easily extended to higher dimensional transfer
functions. In addition, fast volume rendering algorithms that as-
sume the transfer function can be implemented as a linear lookup
table (LUT) can be difficult to adapt to multi-dimensional transfer
functions due to the linear interpolation imposed on such LUTs.

A previous paper [19] demonstrated the importance and power of
multi-dimensional transfer functions. This paper extends that work
with a more detailed exposition of the multi-dimensional trans-
fer function concept, a generalization of multi-dimensional trans-
fer functions for both scalar and multivariate data, as well as a
novel technique for the interactive generation of volumetric shad-
ows. To resolve the potential complexities in a user interface for
multi-dimensional transfer functions, we introduce a set of direct
manipulation widgets which make finding and experimenting with
transfer functions an intuitive, efficient, and informative process.
In order to make this process genuinely interactive, we exploit the
fast rendering capabilities of modern graphics hardware, especially
3D texture memory and pixel texturing operations. Together, the
widgets and the hardware form the basis for new interaction modes
which can guide users towards transfer function settings appropri-
ate for their visualization and data exploration interests.

3 Previous Work
3.1 Transfer Functions

Even though volume rendering as a visualization tool is more than
ten years old, only recently has research focused on making the
space of transfer functions easier to explore. He et al. [12] gener-
ated transfer functions with genetic algorithms driven either by user
selection of thumbnail renderings, or some objective image fitness
function. The Design Gallery [26] creates an intuitive interface to
the entire space of all possible transfer functions based on auto-
mated analysis and layout of rendered images. A more data-centric
approach is the Contour Spectrum [1], which visually summarizes
the space of isosurfaces in terms of metrics like surface area and
mean gradient magnitude, thereby guiding the choice of isovalue
for isosurfacing, and also providing information useful for trans-
fer function generation. Another recent paper [21] presents a novel
transfer function interface in which small thumbnail renderings are
arranged according to their relationship with the spaces of data val-
ues, color, and opacity.

The application of these methods is limited to the generation of
1D transfer functions, even though 2D transfer functions were in-
troduced by Levoy in 1988 [25]. Levoy introduced two styles of
transfer functions, both two-dimensional, and both using gradient
magnitude for the second dimension. One transfer function was
intended for the display of interfaces between materials, the other



for the display of isovalue contours in more smoothly varying data.
The previous work most directly related to our approach for visu-
alizing scalar data facilitates the semi-automatic generation of both
1D and 2D transfer functions [17, 32]. Using principles of com-
puter vision edge detection, the semi-automatic method strives to
isolate those portions of the transfer function domain which most
reliably correlate with the middle of material interface boundaries.
Other work closely related to our approach for visualizing multi-
variate data uses a 2D transfer function to visualize data derived
from multiple MRI pulse sequences [23].

Scalar volume rendering research that uses multi-dimensional
transfer functions is relatively scarce. One paper discusses the use
of transfer functions similar to Levoy’s as part of visualization in
the context of wavelet volume representation [30]. More recently,
the VolumePro graphics board uses a 12-bit 1D lookup table for
the transfer function, but also allows opacity modulation by gra-
dient magnitude, effectively implementing a separable 2D trans-
fer function [31]. Other work involving multi-dimensional transfer
functions uses various types of second derivatives in order to distin-
guish features in the volume according to their shape and curvature
characteristics [15, 37].

Designing colormaps for displaying non-volumetric data is a
task similar to finding transfer functions. Previous work has de-
veloped strategies and guidelines for colormap creation, based on
visualization goals, types of data, perceptual considerations, and
user studies [3, 35, 39].

3.2 Direct Manipulation Widgets

Direct manipulation widgets are geometric objects rendered with a
visualization and are designed to provide the user with a 3D inter-
face [5, 14, 34, 38, 41]. For example, a frame widget can be used
to select a 2D plane within a volume. Widgets are typically ren-
dered from basic geometric primitives such as spheres, cylinders,
and cones. Widget construction is often guided by a constraint sys-
tem which binds elements of a widget to one another. Each sub-part
of a widget represents some functionality of the widget or a param-
eter to which the user has access.

3.3 Hardware Volume Rendering

Many volume rendering techniques based on graphics hardware uti-
lize texture memory to store a 3D dataset. The dataset is then sam-
pled, classified, rendered to proxy geometry, and composited. Clas-
sification typically occurs in hardware as a 1D table lookup.

2D texture-based techniques slice along the major axes of the
data and take advantage of hardware bilinear interpolation within
the slice [4]. These methods require three copies of the volume to
reside in texture memory, one per axis, and they often suffer from
artifacts caused by under-sampling along the slice axis. Trilinear in-
terpolation can be attained using 2D textures with specialized hard-
ware extensions available on some commodity graphics cards [6].
This technique allows intermediate slices along the slice axis to be
computed in hardware. These hardware extensions also permit dif-
fuse shaded volumes to be rendered at interactive frame rates.

3D texture-based techniques typically sample view-aligned
slices through the volume, leveraging hardware trilinear interpo-
lation [11]. Other proxy geometry, such as spherical shells, may be
used with 3D texture methods to eliminate artifacts caused by per-
spective projection [24]. The pixel texture OpenGL extension has
been used with 3D texture techniques to encode both data value and
a diffuse illumination parameter which allows shading and classi-
fication to occur in the same look-up [28]. Engel et al. showed
how to significantly reduce the number of slices needed to ade-
quately sample a scalar volume, while maintaining a high quality
rendering, using a mathematical technique of pre-integration and
hardware extensions such as dependent textures [10].

Another form of volume rendering graphics hardware is the
Cube-4 architecture [33] and the subsequent VolumePro PCI graph-
ics board [31]. The VolumePro graphics board implements ray cast-
ing combined with the shear warp factorization for volume render-
ing [22]. It features trilinear interpolation with supersampling, gra-
dient estimation, shaded volumes, and provides interactive frame
rates for scalar volumes with sizes up to 5123 .

4 Multi-Dimensional Transfer Functions

Transfer function specification is arguably the most important task
in volume visualization. While the transfer function’s role is sim-
ply to assign optical properties such as opacity and color to the
data being visualized, the value of the resulting visualization will
be largely dependent on how well these optical properties capture
features of interest. Specifying a good transfer function can be a
difficult and tedious task for several reasons. First, it is difficult
to uniquely identify features of interest in the transfer function do-
main. Even though a feature of interest may be easily identifiable
in the spatial domain, the range of data values that characterize the
feature may be difficult to isolate in the transfer function domain
due to the fact that other, uninteresting regions, may contain the
same range of data values. Second, transfer functions can have an
enormous number of degrees of freedom. Even simple 1D trans-
fer functions using linear ramps require two degrees of freedom per
control point. Third, typical user interfaces do not guide the user in
setting these control points based on dataset specific information.
Without this type of information, the user must rely on trial and er-
ror. This kind of interaction can be especially frustrating since small
changes to the transfer function can result in surprisingly large and
unintuitive changes to the volume rendering.

Rather than classifying a sample based on a single scalar value,
multi-dimensional transfer functions allow a sample to be classi-
fied based on a combination of values. Multiple data values tend
increase the probability that a feature can be uniquely isolated in
the transfer function domain, effectively providing a larger vocabu-
lary for expressing the differences between structures in the dataset.
These values are the axes of a multi-dimensional transfer function.
Adding dimensions to the transfer function, however, greatly in-
creases the degrees of freedom necessary for specifying a transfer
function and the need for dataset specific guidance.

In the following sections, we demonstrate the application of
multi-dimensional transfer functions to two distinct classes of data:
scalar data and multivariate data. The scalar data application is
focused on locating surface boundaries in a scalar volume. We
motivate and describe the axes of the multi-dimensional transfer
function for this type data. We then describe the use of multi-
dimensional transfer functions for multivariate data. We use two ex-
amples, color volumes and meteorological simulations, to demon-
strate the effectiveness of such transfer functions.

4.1 Scalar Data

For scalar data, the gradient is a first derivative measure. As a vec-
tor, it describes the direction of greatest change. The normalized
gradient is often used as the normal for surface based volume shad-
ing. The gradient magnitude is a scalar quantity which describes
the local rate of change in the scalar field. For notational conve-
nience, we will use f 0 to indicate the magnitude of the gradient of
f , where f is the scalar function representing the data:

f
0 = krfk (1)

This value is useful as an axis of the transfer function since it
discriminates between homogeneous regions (low gradient mag-
nitudes) and regions of change (high gradient magnitudes). This
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(a) A 1D histogram. The black region represents the number of data
value occurrences on a linear scale, the grey is on a log scale. The
colored regions (A,B,C) identify basic materials.
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(b) A log-scale 2D joint histogram. The lower image shows the location
of materials (A,B,C), and material boundaries (D,E,F).
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(c) A volume rendering showing all of the materials and boundaries
identified above, except air (A), using a 2D transfer function.

Figure 1: Material and boundary identification of the Chapel Hill
CT Head with data value alone (a) versus data value and gradient
magnitude (f ’), seen in (b). The basic materials captured by CT,
air (A), soft tissue (B), and bone (C) can be identified using a 1D
transfer function as seen in (a). 1D transfer functions, however,
cannot capture the complex combinations of material boundaries;
air and soft tissue boundary (D), soft tissue and bone boundary (E),
and air and bone boundary (F) as seen in (b) and (c).

(a) 1D transfer function (b) 2D transfer function

Figure 2: The frontal and maxillary sinuses of the Visible Male CT.
While a 1D transfer function can show the sinuses along with the
skin, it cannot capture them in isolation. Only a higher dimensional
transfer function, in this case a 2D transfer function using data value
and gradient magnitude, can uniquely classify them.

effect can be seen in Figure 1. Figure 1(a) shows a 1D histogram
based on data value and identifies the three basic materials in the
Chapel Hill CT Head; air (A), soft tissue (B), and bone (C). Fig-
ure 1(b) shows a log-scale joint histogram of data value versus gra-
dient magnitude. Since materials are relatively homogeneous, their
gradient magnitudes are low. They can be seen as the circular re-
gions at the bottom of the histogram. The boundaries between the
materials are shown as the arches; air and soft tissue boundary (D),
soft tissue and bone boundary (E), and air and bone boundary (F).
Each of these materials and boundaries can be isolated using a 2D
transfer function based on data value and gradient magnitude. Fig-
ure 1(c) shows a volume rendering with the corresponding features
labeled. The air/bone boundary, (F) in Figure 1 is a good example of
a surface which cannot be isolated using a simple 1D transfer func-
tion. This type of boundary appears in CT datasets as the sinuses
and mastoid cells. Figure 2 compares attempts at emphasizing the
frontal and maxillary sinuses of the Visible Male CT using a 1D
transfer function and a 2D transfer function.

Often, the arches that define material boundaries in a 2D trans-
fer function overlap. In some cases this overlap prevents a mate-
rial from being properly isolated in the transfer function. This ef-
fect can be seen in the circled region of the 2D data value/gradient
magnitude joint histogram of the human tooth CT in Figure 3(a).
The background/dentin boundary (F) shares the same ranges of
data value and gradient magnitude as portions of the pulp/dentin
(E) and the background/enamel (H) boundaries. When the back-
ground/dentin boundary (F) is emphasized in a 2D transfer func-
tion, the boundaries (E) and (H) are erroneously colored in the vol-
ume rendering, as seen in Figure 3(c). A second derivative mea-
sure enables a more precise disambiguation of complex boundary
configurations such as this. Some edge detection algorithms (such
as Marr-Hildreth [27]) locate the middle of an edge by detecting



a zero-crossing in a second derivative measure, such as the Lapla-
cian. We compute a more accurate but computationally expensive
measure, the second directional derivative along the gradient direc-
tion, which involves the Hessian (H), a matrix of second partial
derivatives. We will use f 00 to indicate this second derivative.

f
00 =

1

krfk2
(rf)THfrf (2)

More details on these measurements can be found in previous
work on semi-automatic transfer function generation [16, 17]. Fig-
ure 3(b) shows a joint histogram of data value verses this second di-
rectional derivative. Notice that the boundaries (E), (F), and (G) no
longer overlap. By reducing the opacity assigned to non-zero sec-
ond derivative values, we can render the background/dentin bound-
ary in isolation, as seen in Figure 3(d). The relationship between
data value, gradient magnitude, and the second directional deriva-
tive is made clear in Figure 4. Figure 4(a) shows the behavior of
these values along a line through an idealized boundary between
two homogeneous materials (inset). Notice that at the center of the
boundary, the gradient magnitude is high and the second derivative
is zero. Figure 4(b) shows the behavior of the gradient magnitude
and second derivative as a function of data value. This shows the
curves as they appear in a joint histogram or a transfer function.

4.2 Multivariate data

Multivariate data contains, at each sample point, multiple scalar val-
ues that represent different simulated or measured quantities. Mul-
tivariate data can come from numerical simulations which calcu-
late a list of quantities at each timestep, or from medical scanning
modalities such as MRI, which can measure a variety of tissue char-
acteristics, or from a combination of different scanning modalities,
such as MRI, CT, and PET. Multi-dimensional transfer functions
are an obvious choice for volume visualization of multivariate data,
since we can assign different data values to the different axes of the
transfer function. It is often the case that a feature of interest in
these datasets cannot be properly classified using any single vari-
able by itself. In addition, we can compute a kind of first derivative
in the multivariate data in order to create more information about
local structure. As with scalar data, the use of a first derivative
measure as one axis of the multi-dimensional transfer function can
increase the specificity with which we can isolate and visualize dif-
ferent features in the data.

One example of data that benefits from multi-dimensional trans-
fer functions is volumetric color data. A number of volumetric
color datasets are available, such as the Visible Human Project’s
RGB data. The process of acquiring color data by cryosection is
becoming common for the investigation of anatomy and histology.
In these datasets, the differences in materials are expressed by their
unique spectral signature. A multi-dimensional transfer function is
a natural choice for visualizing this type of data. Opacity can be as-
signed to different positions in the 3D RGB color space. Figure 5(a)
shows a joint histogram of the RGB color data for the Visible Male;
regions of this space that correspond to different tissues are identi-
fied. Regions (A) and (B) correspond to the fatty tissues of the
brain, white and gray matter, as seen in Figure 5(b). In this visual-
ization, the transition between white and grey matter is intentionally
left out to better emphasize these materials and to demonstrate the
expressivity of the multi-dimensional transfer function. Figure 5(c)
shows a visualiation of the color values that represent the muscle
structure and connective tissues (C) of the head and neck with the
skin surface (D) given a small amount of opacity for context. In
both of these figures, a slice of the original data is mapped to the
surface of the clipping plane for reference. Figure 6 shows a visu-
alization of the kidney from the Visible Male RGB data.
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Figure 3: Material and boundary identification of the human tooth
CT with data value and gradient magnitude (f ’), seen in (a), and
data value and second derivative (f”), seen in (b). The back-
ground/dentin boundary (F) cannot be adequately captured with
data value and gradient magnitude alone. (c) shows the results of
a 2D transfer function designed to show only the background/detin
(F) and dentin/enamel boundaries (G). The background/enamel (H)
and dentin/pulp (E) boundaries are erroneously colored. Adding
the second derivative as a third axis to the transfer function dis-
ambiguates the boundaries. (d) shows the results of a 3D transfer
function that gives lower opacity to non-zero second derivative val-
ues.
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Figure 4: The behavior of primary data value (f ), gradient magni-
tude (f 0), and the second directional derivative (f00) as a function
of position (a) and as a function of data value (b).
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(a) Histograms of the Visible Male RGB dataset.
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(b) The white (A) and gray (B) matter of the brain.
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(c) The muscle and connective tissues (C) of the head and neck,
showing skin (D) for reference.

Figure 5: The Visible Male RGB (color) data. The opacity is set
using a 3D transfer function, color is taken directly from the data.
The histogram (a) is visualized as projections on the primary planes
of the RGB color space.

E

Figure 6: A kidney from the Visible Male RGB dataset. The re-
nal vein is labeled (E). A clipping plane reveals internal structure
(right).

Our choice of RGB for the transfer function axes is rather arbi-
trary; it is simply the most direct use of the color data. Other natural
choices for color representation are the HSV or HLS spaces, or a
CIE colorimetric space, if calibration data is available. Any color
space is fine as long as it is possible to convert to RGB for display.
It is important to note, however, that materials which are indistin-
guishable in the RGB color space will also be indistinguishable in
any other color space. The choice of color space representation for
the transfer function should be made on the basis of ease of use.
Some color spaces, such as HSV, are better geared for human nav-
igation. Our experience, however, has shown that tissue colors in
cryosection are sometimes not what we expect. This can be seen in
Figure 6, where the color in the renal vein (E) is essentially black,
rather than red as we might expect blood to be. For this reason,
our exploration of this dataset has been largely guided by probing
and dual-domain interaction, which are described in the next sec-
tion. We have also found it impractical to manipulate the transfer
function in the full 3D space that it defines. Instead, we only manip-
ulate the transfer function using two axes at a time. The placement
of classified regions is very similar to that shown in Figure 5(a),
where each classified region is represented as a projection onto two
of the transfer function axes.

The kind of first derivative that we compute in multivariate data
is based on previous work in color image segmentation [8, 36, 7].
While the gradient magnitude in scalar data represents the magni-
tude of local change at a point, an analogous first derivative mea-
sure in multivariate data captures the total amount of local change,
across all the data components. This derivative has proven use-
ful in color image segmentation because it allows a generalization
of gradient-based edge detection. In our system, we use this first
derivative measure as one axis in the multi-dimensional transfer
function in order to isolate and visualize different regions of a multi-
variate volume according to the amount of local change, analogous
to our use of gradient magnitude for scalar data.

If we represent the dataset as a multivariate function f(x; y; z) :
R
3 ! R

m , so that

f(x; y; z) = (f1(x; y; z); f2(x; y; z); � � � ; fm(x; y; z))



then the derivative Df is a matrix of first partial derivatives:

Df =
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By multiplyingDf with its transpose, we can form a 3�3 tensor
G which captures the directional dependence of total change:

G = (Df)TDf (3)

In the context of color edge detection [8, 36, 7], this matrix
(specifically, its two-dimensional analog) is used as the basis of
a quadratic function of direction n, which Cumani [7] terms the
squared local contrast in direction n:

S(n) = n
T
Gn

S(n) can be analyzed by finding the principal eigenvector (and as-
sociated eigenvalue) of G to determine the direction n of greatest
local contrast, or fastest change, and the magnitude of that change.
Our experience, however, has been that in the context of multi-
dimensional transfer functions, it is sufficient (and perhaps prefer-
able) to simply take the L2 norm of G, kGk, which is the square
root of the sum of the squares of the individual matrix components.
As the L2 norm is invariant with respect to rotation, this is the same
as the L2 norm of the three eigenvalues of G, motivating our use
of kGk as a directionally independent (and rotationally invariant)
measure of local change. Other work on volume rendering of color
data has used a non-rotationally invariant measure of G [9]. Since
it is sometimes the case that the dynamic range of the individual
channels (fi) differ, we normalize the ranges of each channel’s data
value to be between zero and one. This allows each channel to have
an equal contribution in the derivative calculation.

Meteorological simulations are a good example of datasets with
features that can only be identified using a combination of data val-
ues [18], and which additionally benefit from using kGk as an axis
in the multi-dimensional transfer function. Air masses, for instance,
are a phenomenon described primarily by differences in both tem-
perature and humidity. The interfaces of these air masses, or fronts,
are responsible for the formation of mid-latitude storms. In par-
ticular, cold fronts can produce severe weather including showers,
thunderstorms, hail, high winds, and tornados. Naturally, the pre-
cise identification of these fronts are of interest to meteorologists.
Figure 7 contains the results from a numerical meteorological sim-
ulation that uses a forcing function from measured data. Figure 7(a)
is a surface map of the simulation domain for reference. Figure 7(b)
shows the results of an expert frontal analysis using a technique
which overlays slices through different scalar values, (f1; f2; etc.),
of the dataset, similar to those shown in Figures 7(c) and 7(d). This
type of analysis is difficult because the expert must create a mental
image of frontal behavior based on these scalar visualizations. The
task is greatly simplified by visualizing the data based on its unique
combination of data values, in this case temperature and humidity.
The frontal regions were identified by probing in the spatial do-
main, seen as the dotted line in Figure 7(f) and visualizing the data
values in the transfer function domain, seen in Figure 7(e). While
the frontal region is identified as (A) in Figure 7(e), the visualiza-
tion is clearer when we show the regions which correspond to the
air masses that meet at these fronts, identified as (B) and (C) in Fig-
ures 7(e) and 7(f). The rendering on the left in Figure 7(f) shows
the air masses; the image on the right uses a similar transfer func-
tion, but excludes regions with low kGk values. Notice that the
interfaces, or frontal regions, of these air masses are emphasized.

(a) Simulation map (b) Expert Frontal Analysis

(c) Temperature (d) Humidity
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(e) 2D joint histogram of Temperature versus Humidity
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(f) Warm (red) and cold (blue) air mass fronts

Figure 7: Frontal zones of a numerical weather simulation. (a)
shows a reference map of the simulation domain. (b) shows the re-
sults of an expert analysis using scalar data visualizations similar to
(c) and (d). (c) and (d) are slices through the dataset with a spectral
color map. (e) shows a 2D log-scale joint histogram of temperature
versus humidity. Region (A) shows the ranges of these data values
that represent a mid-latitude front, (B) identifies the warm air mass,
(C) identifies the cold air mass. (f) shows a volume rendering using
a 3D transfer function which emphasizes regions (B) and (C). kGk
from Equation 3 is used as the third axis of the transfer function
for the rendering on the right to emphasize the portions of the air
masses near the front. The dotted line shows a path through the
dataset, the values along this line are shown in (e).
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Figure 8: The direct manipulation widgets.

5 Interaction and Tools

While adding dimensions to the transfer function enhances our abil-
ity to isolate features of interest in a dataset, it tends to make the al-
ready unintuitive space of the transfer function even more difficult
to navigate. This difficulty can be considered in terms of a con-
ceptual gap between the spatial and transfer function domains. The
spatial domain is the familiar 3D space for geometry and the vol-
ume data being rendered. The transfer function domain, however,
is more abstract. Its dimensions are not spatial (i.e. the ranges of
data values), and the quantities at each location are not scalar (i.e.
opacity and three colors). It can be very difficult to determine the
regions of the transfer function that correspond to features of in-
terest, especially when a region is very small. Thus, to close this
conceptual gap, we developed new interaction techniques, which
permit interaction in both domains simultaneously, and a suite of
direct manipulation widgets which provide the tools for such inter-
actions. Figure 8 shows the various direct manipulation widgets as
they appear in the system.

In a typical session with our system, the user creates a transfer
function using a natural process of exploration, specification, and
refinement. Initially, the user is presented with a volume rendering
using a pre-determined transfer function that is likely to bring out
some features of interest. This can originate with an automated
transfer function generation tool [16], or it could be the default
transfer function described later in Section 7. The user would then
begin exploring the dataset.

Exploration is the process by which a user familiarizes him or
herself with the dataset. A clipping plane can be moved through
the volume to reveal internal structures. A slice of the original data
can be mapped to the clipping plane, permitting a close inspection

of the entire range of data values. Sample positions are probed in
the spatial domain and their values, along with values in a neigh-
borhood around that point, are visualized in the transfer function
domain. This feedback allows the user to identify the regions of
the transfer function that correspond to potential features of inter-
est, made visible by the default transfer function or the sliced data.
Once these regions have been identified, the user can then begin
specifying a custom transfer function.

During the specification stage, the user creates a rough draft of
the desired transfer function. While this can be accomplished by
manually adding regions to the transfer function, a simpler method
adds opacity to the regions in the transfer function at and around lo-
cations queried in the spatial domain. That is, the system can track,
with a small region of opacity in the transfer function domain, the
data values at the user-selected locations, while continually updat-
ing the volume rendering. This visualizes, in the spatial domain,
all other voxels with similar transfer function values. If the user
decides that an important feature is captured by the current transfer
function, he or she can add that region into the transfer function and
continue querying and investigating the volume.

Once these regions have been identified, the user can refine them
by manipulating control points in the transfer function domain to
better visualize features of interest. An important feature of our
system is the ability to manipulate portions of the transfer function
as discrete entities. This permits the modification of regions cor-
responding to a particular feature without affecting other classified
regions.

Finally, this is an iterative process. A user continues the explo-
ration, specification, and refinement steps until they are satisfied
that all features of interest are made visible. In the remainder of
this section we will introduce the interaction modalities used in the
exploration and specification stages and briefly describe the indi-
vidual direct manipulation widgets.

5.1 Probing and Dual-Domain Interaction

The concept of probing is simple: the user points at a location in
the spatial domain and visualizes the values at that point in transfer
function domain. We have found this feedback to be essential for
making the connection between features seen in the spatial domain
and the ranges of values that identify them in the transfer function
domain. Creating the best transfer function for visualizing a feature
of interest is only possible with an understanding of the behavior
of data values at and around that feature. This is especially true for
multi-dimensional transfer functions where a feature is described
by a complex combination of data values. The value of this dataset-
specific guidance can be further enhanced by automatically setting
the transfer function based on these queried values.

In a traditional volume rendering system, setting the transfer
function involves moving the control points (in a sequence of linear
ramps defining color and opacity), and then observing the resulting
rendered image. That is, interaction in the transfer function domain
is guided by careful observation of changes in the spatial domain.
We prefer a reversal of this process, in which the transfer function
is set by direct interaction in the spatial domain, with observation
of the transfer function domain. Furthermore, by allowing interac-
tion to happen in both domains simultaneously, the conceptual gap
between them is significantly lessened, effectively simplifying the
complicated task of specifying a multi-dimensional transfer func-
tion to pointing at a feature of interest. We use the term “dual-
domain interaction” to describe this approach to transfer function
exploration and generation.

The top of Figure 9 illustrates the specific steps of dual-domain
interaction. When a position inside the volume is queried by the
user with the data probe widget (a), the values associated with
that position (multivariate values, or the data value, first and sec-
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Figure 9: Dual-Domain Interaction

ond derivative) are graphically represented in the transfer function
widget (b). Then, a small region of high opacity (c) is temporarily
added to the transfer function at the data values determined by the
probe location. The user has now set a multi-dimensional transfer
function simply by positioning a data probe within the volume. The
resulting rendering (d) depicts (in the spatial domain) all the other
locations in the volume which share values (in the transfer function
domain) with those at the data probe tip. If the features rendered
are of interest, the user can copy the temporary transfer function to
the permanent one (e), by, for instance, tapping the keyboard space
bar with the free hand. As features of interest are discovered, they
can be added to the transfer function quickly and easily with this
type of two-handed interaction. Alternately, the probe feedback
can be used to manually set other types of classification widgets
(f), which are described later. The outcome of dual-domain inter-
action is an effective multi-dimensional transfer function built up
over the course of data exploration. The widget components which
participated in this process can be seen in the bottom of Figure 9,
which shows how dual-domain interaction can help volume render
the CT tooth dataset. The remainder of this section describes the in-
dividual widgets and provides additional details about dual-domain
interaction.

5.2 Data Probe Widget

The data probe widget is responsible for reporting its tip’s position
in volume space and its slider sub-widget’s value. Its pencil-like
shape is designed to give the user the ability to point at a feature
in the volume being rendered. The other end of the widget orients
the widget about its tip. When the volume rendering’s position or
orientation is modified, the data probe widget’s tip tracks its point in
volume space. A natural extension is to link the data probe widget

to a haptic device, such as the SensAble PHANTOM, which can
provide a direct 3D location and orientation [29].

5.3 Clipping Plane Widget

The clipping plane is responsible for reporting its orientation and
position to the volume renderer, which handles the actual clipping
when it draws the volume. In addition to clipping, the volume wid-
get will also map a slice of the data to the arbitrary plane defined by
the clip widget, and blend it with the volume by a constant opacity
value determined by the clip widget’s slider. It is also responsible
for reporting the spatial position of a mouse click on its clipping
surface. This provides an additional means of querying positions
within the volume, distinct from the 3D data probe. The balls at the
corners of the clipping plane widget are used to modify its orienta-
tion, and the bars on the edges are used to modify its position.

5.4 Transfer Function Widget

The main role of the transfer function widget is to present a graph-
ical representation of the transfer function domain, in which feed-
back from querying the volume (with the data probe or clipping
plane) is displayed, and in which the transfer function itself can be
set and altered. The balls at the corners of the transfer function wid-
get are used to resize it, as with a desktop window, and the bars on
the edges are used to translate its position. The inner plane of the
frame is a polygon texture-mapped with the lookup table contain-
ing the transfer function. A joint histogram of data, seen with the
images in Section 4, can also be blended with the transfer function
to provide valuable information about the behavior and relationship
of data values in the transfer function domain.

The data values at the position queried in the volume (either via
the data probe or clipping plane widgets) are represented with a
small ball in the transfer function widget. In addition to the pre-
cise location queried, the eight data sample points at the corners
of the voxel containing the query location are also represented by
balls in the transfer function domain, and are connected together
with edges that reflect the connectivity of the voxel corners in the
spatial domain. By “re-projecting” a voxel from the spatial domain
to a simple graphical representation in the transfer function domain,
the user can learn how the transfer function variables (data values at
each sample point) are changing near the probe location. The values
for the third, or unseen axis, are indicated by coloring the balls. For
instance, with scalar data, second derivative values which are neg-
ative, zero, or positive are represented by blue, white, and yellow
balls, respectively. When the projected points form an arc, with
the color varying through these assigned colors, the probe is at a
boundary in the volume as seen in Figure 8. When the re-projected
data points are clustered together, the probe is in a homogeneous
region. As the user gains experience with this representation, he or
she can learn to “read” the re-projected voxel as an indicator of the
volume characteristics at the probe location.

5.5 Classification Widgets

In addition to the process of dual-domain interaction described
above, transfer functions can also be created in a more manual fash-
ion by adding one or more classification widgets to the main trans-
fer function window. Classification widgets are designed to iden-
tify regions of the transfer function as discrete entities. Each widget
type has control points which modify its position or size. Optical
properties, such as opacity and color are modified by selecting the
widgets inner surface. The opacity and color contributions from
each classification widget are blended together to form the trans-
fer function. We have developed two types of classification widget:
triangular and rectangular.



The triangular classification widget, shown in Figures 2, 8, 9,
and 11, is based on Levoy’s “isovalue contour surface” opacity
function [25]. The widget is an inverted triangle with a base point
attached to the horizontal data value axis. The triangle’s size and
position are adjusted with control points. There are an upper and
lower threshold for the gradient magnitude, as well as a shear. Color
is constant across the widget; opacity is maximal along the center
of the widget, and it linearly ramps down to zero at the left and right
edges.

The triangular classification widgets are particularly effective for
visualizing surfaces in scalar data. More general transfer functions,
for visualizing data which may not have clear boundaries, can be
created with the rectangular classification widget. The rectangular
region spanned by the widget defines the data values which receive
opacity and color. Like the triangular widget, color is constant, but
the opacity is more flexible. It can be constant, or fall off in various
ways: quadratically as an ellipsoid with axes corresponding to the
rectangle’s aspect ratio, or linearly as a ramp, tent, or pyramid.

As noted in the description of the transfer function widget, even
when a transfer function has more than two dimensions, only two
dimensions are shown at any one time. For 3D transfer functions,
classification widgets are shown as their projections onto the visi-
ble axes. In this case, a rectangular classification widget becomes
a box in the 3D domain of the transfer function. Its appearance
to the user, however, as 2D projections, is identical to the rectan-
gular widget. When the third axis of the transfer function plays a
more simplified role, interactions along this axis are tied to slid-
ers seen along the top bar of the transfer function. For instance,
since our research on scalar data has focused on visualizing bound-
aries between material regions, we have consistently used the sec-
ond derivative to emphasize the regions where the second derivative
magnitude is small or zero. Specifically, maximal opacity is always
given to zero second derivative, and decreases linearly towards the
second derivative extremal values. How much the opacity changes
as a function of second derivative magnitude is controlled with a
single slider, which we call the “boundary emphasis slider.” With
the slider in its left-most position, zero opacity is given to extremal
second derivatives; in the right-most position, opacity is constant
with respect to the second derivative. We have employed similar
techniques for manipulating other types of third axis values using
multiple sliders.

While the classification widgets are usually set by hand in the
transfer function domain, based on feedback from probing and re-
projected voxels, their placement can also be somewhat automated.
This further reduces the difficulty of creating an effective higher
dimensional transfer function. The classification widget’s location
and size in the transfer function domain can be tied to the distribu-
tion of the re-projected voxels determined by the data probe loca-
tion. For instance, the rectangular classification widget can be cen-
tered at the transfer function values interpolated at the data probe’s
tip, with the size of the rectangle controlled by the data probe’s
slider. The triangular classification widget can be located horizon-
tally at the data value queried by the probe, with the width and
height determined by the horizontal and vertical variance in the re-
projected voxel locations. This technique produced the changes in
the transfer function for the sequence of renderings in Figure 9.

5.6 Shading Widget

The shading widget is a collection of spheres which can be ren-
dered in the scene to indicate and control the light direction and
color. Fixing a few lights in view space is generally effective for
renderings, therefore changing the lighting is an infrequent opera-
tion.

5.7 Color Picker Widget

The color picker is an embedded widget which is based on the hue-
lightness-saturation (HLS) color space. Interacting with this wid-
get can be thought of as manipulating a sphere with hues mapped
around the equator, gradually becoming black at the top, and white
at the bottom. To select a hue, the user moves the mouse hori-
zontally, rotating the ball around its vertical axis. Vertical mouse
motion tips the sphere toward or away from the user, shifting the
color towards white or black. Saturation and opacity are selected
independently using different mouse buttons with vertical motion.
While this color picker can be thought of as manipulating an HLS
sphere, no geometry for this is rendered. Rather, the triangular
and rectangular classification widgets embed the color picker in the
polygonal region which contributes opacity and color to the transfer
function domain. The user specifies a color simply by clicking on
that object, then moving the mouse horizontally and vertically until
the desired hue and lightness are visible. In most cases, the desired
color can be selected with a single mouse click and gesture.

6 Rendering and Hardware

While this paper is conceptually focused on the matter of setting
and applying higher dimensional transfer functions, the quality of
interaction and exploration described would not be possible without
the use of modern graphics hardware. Our implementation relies
heavily on an OpenGL extension known as dependent texture reads.
This extension can be used for both classification and shading. In
this section, we describe our modifications to the classification por-
tion of the traditional 3D texture-based volume rendering pipeline.
We also describe methods for adding interactive volumetric shading
and shadows to the pipeline.

Our system supports volumes which are stored as 3D textures
with one, two, or four values per texel. This is is due to memory
alignment restrictions of graphics hardware. Volumes with three
values per sample utilize a four value texture, where the fourth value
is simply ignored. Volumes with more than four values per sample
could be constructed using multiple textures.

6.1 Dependent Texture Reads

Dependent texture reads are a hardware extension that is a similar
but more efficient implementation of a previous extension known
as pixel texture [10, 13, 28, 40]. Dependent texture reads and pixel
texture are names for operations which use color fragments to gen-
erate texture coordinates, and replace those color fragments with
the corresponding entries from a texture. This operation essentially
amounts to an arbitrary function evaluation with up to three vari-
ables via a lookup table. If we were to perform this operation on an
RGB fragment, each channel value would be scaled between zero
and one, and these new values would then be used as texture coordi-
nates of a 3D texture. The color values produced by the 3D texture
lookup replace the original RGB values. Nearest neighbor or linear
interpolation can be used to generate the replacement values. The
ability to scale and interpolate color channel values is a convenient
feature of the hardware. It allows the number of elements along a
dimension of the texture containing the new color values to differ
from the dynamic range of the component that generated the tex-
ture coordinate. Without this flexibility, the size of a 3D dependent
texture would be prohibitively large.

6.2 Classification

Dependent texture reads are used for the transfer function evalua-
tion. Data values stored in the color components of a 3D texture
are interpolated across some proxy geometry, a plane for instance.



These values are then converted to texture coordinates and used
to acquire the color and alpha values in the transfer function tex-
ture per-pixel in screen space. For eight bit data, an ideal transfer
function texture would have 256 color and alpha values along each
axis. For 3D transfer functions, however, the transfer function tex-
ture would then be 2563 � 4 bytes. Besides the enormous memory
requirements of such a texture, the size also affects how fast the
classification widgets can be rasterized, thus affecting the interac-
tivity of transfer function updates. We therefore limit the number
of elements along an axis of a 3D transfer function based on its im-
portance. For instance, with scalar data, the primary data value is
the most important, the gradient magnitude is secondary, and the
second derivative serves an even more tertiary role. For this type of
multi-dimensional transfer function, we commonly use a 3D trans-
fer function texture with dimensions 256� 128� 8 for data value,
gradient magnitude, and second derivative respectively. 3D transfer
functions can also be composed separably as a 2D and 1D trans-
fer function. This means that the total size of the transfer function
is 2562 + 256. The tradeoff, however, is in expressivity. We can
no longer specify a transfer function based on the unique combina-
tion of all three data values. Separable transfer functions are still
quite powerful. Applying the second derivative as a separable 1D
portion of the transfer functions is quite effective for visualizing
boundaries between materials. With the separable 3D transfer func-
tion for scalar volumes, there is only one boundary emphasis slider
which affects all classification widgets as opposed to the general
case where each classification widget has its own boundary empha-
sis slider. We have employed a similar approach for multi-variate
data visualization. The meteorological example used a separable
3D transfer function. Temperature and humidity were classified us-
ing a 2D transfer function and the multi-derivative of these values
was classified using a 1D transfer function. Since our specific goal
was to show only regions with high values of kGk, we only needed
two sliders to specify the beginning and ending points of a linear
ramp along this axis of the transfer function.

6.3 Surface Shading

Shading is a fundamental component of volume rendering because
it is a natural and efficient way to express information about the
shape of structures in the volume. However, much previous work
with texture-memory based volume rendering lacks shading. Many
modern graphics hardware platforms support multi-texture and a
number of user defined operations for blending these textures per-
pixel. These operations, which we will refer to as fragment shading,
can be leveraged to compute a surface shading model.

The technique originally proposed by Rezk-Salama et al. [6] is
an efficient way to compute the Blinn-Phong shading model on
a per-pixel basis for volumes. This approach, however, can suf-
fer from artifacts caused by denormalization during interpolation.
While future generations of graphics hardware should support the
square root operation needed to renormalize on a per-pixel basis,
we can utilize cube map dependent texture reads to evaluate the
shading model. This type of dependent texture read allows an RGB
color component to be treated as a vector and used as the texture co-
ordinates for a cube map. Conceptually, a cube map can be thought
of as a collection of six textures that make up the faces of a cube
centered about the origin. Texels are accessed with a 3D texture co-
ordinate (s,t,r) representing a direction vector. The accessed texel
is the point corresponding to the intersection of a line through the
origin in the direction of (s,t,r) and a cube face. The color values at
this position represent incoming diffuse radiance if the vector (s,t,r)
is a surface normal or specular radiance if (s,t,r) is a reflection vec-
tor. The advantages of using a cube map dependent texture read is
that the vector (s,t,r) does not need to be normalized, and the cube
map can encode an arbitrary number of lights or a full environment

map. This approach, however, comes at the cost of reduced perfor-
mance. A per-pixel cube map evaluation can be as much as three
times slower than evaluating the dot products for a limited number
of light sources in the fragment shader stage.

Surface based shading methods are well suited for visualizing the
boundaries between materials. However, since the surface normal
is approximated by the normalized gradient of a scalar field, these
methods are not robust for shading homogeneous regions, where
the gradient magnitude is very low or zero and its measurement is
sensitive to noise. Gradient based surface shading is also unsuitable
for shading volume renderings of multivariate fields. While we can
assign the direction of greatest change for a point in a multivariate
field to the eigenvector (e1) corresponding to the largest eigenvalue
(�1) of the tensorG from Equation 3, e1 is only a valid representa-
tion of orientation, not the absolute direction. This means that the
sign of e1 can flip in neighboring regions even though their orienta-
tions may not differ. Therefore, the vector e1 does not interpolate,
making it a poor choice of surface normal. Furthermore, this orien-
tation may not even correspond to the surface normal of a classified
region in a multivariate field.

6.4 Shadows

Shadows provide important visual queues relating to the depth and
placement of objects in a scene. Since the computation of shad-
ows does not depend on a surface normal, they provide a robust
method for shading homogeneous regions and multivariate vol-
umes. Adding shadows to the volume lighting model means that
light gets attenuated through the volume before being reflected back
to the eye.

Our approach differs from previous work [2] in two ways. First,
rather than creating a volumetric shadow map, we utilize an off
screen render buffer to accumulate the amount of light attenuated
from the light’s point of view. Second, we modify the slice axis
to be the direction halfway between the view and light directions.
This allows the same slice to be rendered from both the eye and light
points of view. Consider the situation for computing shadows when
the view and light directions are the same, as seen in Figure 10(a).
Since the slices for both the eye and light have a one to one corre-
spondence, it is not necessary to precompute a volumetric shadow
map. The amount of light arriving at a particular slice is equal to
one minus the accumulated opacity of the slices rendered before
it. Naturally if the projection matrices for the eye and light differ,
we need to maintain a separate buffer for the attenuation from the
light’s point of view. When the eye and light directions differ, the
volume would be sliced along each direction independently. The
worst case scenario happens when the view and light directions are
perpendicular, as seen in Figure 10(b). In the case, it would seem
necessary to save a full volumetric shadow map which can be re-
sliced with the data volume from the eye’s point of view providing
shadows. This approach, however, suffers from an artifact referred
to as attenuation leakage. The visual consequences of this are blurry
shadows and surfaces which appear much darker than they should
due to the image space high frequencies introduced by the transfer
function. The attenuation at a given sample point is blurred when
light intensity is stored at a coarse resolution and interpolated dur-
ing the observer rendering phase.

Rather than slice along the vector defined by the view direction
or the light direction, we modify the slice axis to allow the same
slice to be rendered from both points of view. When the dot prod-
uct of the light and view directions is positive, we slice along the
vector halfway between the light and view directions, seen in Fig-
ure 10(c). In this case, the volume is rendered in front to back order
with respect to the observer. When the dot product is negative, we
slice along the vector halfway between the light and the inverted
view directions, seen in Figure 10(d). In this case, the volume is
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Figure 10: Modified slice axis for light transport.

rendered in back to front order with respect to the observer. In both
cases the volume is rendered in front to back order with respect to
the light. Care must be taken to insure that the slice spacing along
the view and light directions are maintained when the light or eye
positions change. If the desired slice spacing along the view direc-
tion is dv and the angle between v and l is � then the slice spacing
along the slice direction is

ds = cos(
�

2
)dv: (4)

This is a multi-pass approach. Each slice is first rendered from
the observers point of view using the results of the previous pass
from the light’s point of view, which modulates the brightness of
samples in the current slice. The same slice is then rendered from
light’s point of view to calculate the intensity of the light arriving at
the next layer.

Since we must keep track of the amount of light attenuated at
each slice, we utilize an off screen render buffer, known as a pixel
buffer. This buffer is initialized to 1 � light intensity. It can
also be initialized using an arbitrary image to create effects such as
spotlights. The projection matrix for the light’s point of view need
not be orthographic; a perspective projection matrix can be used
for point light sources. However, the entire volume must fit in the
light’s view frustum. Light is attenuated by simply accumulating
the opacity for each sample using the over operator. The results
are then copied to a texture which is multiplied with the next slice
from the eye’s point of view before it is blended into the frame
buffer. While this copy to texture operation has been highly op-
timized on the current generation of graphics hardware, we have
achieved a dramatic increase in performance using a hardware ex-
tension known as render to texture. This extension allows us to
directly bind a pixel buffer as a texture, avoiding the unnecessary
copy operation.

This approach has a number of advantages over previous volume
shadow methods. First, attenuation leakage is no longer a concern
because the computation of the light transport (slicing density) is
decoupled from the resolution of the data volume. Computing light
attenuation in image space allows us to match the sampling fre-
quency of the light transport with that of the final volume render-
ing. Second, this approach makes far more efficient use of memory
resources than those which require a volumetric shadow map. Only
a single additional 2D buffer is required as opposed to a potentially
large 3D volume. One disadvantage of this approach is that due to

the image space sampling, artifacts may appear at shadow bound-
aries when the opacity makes a sharp jump from low to high. This
can be overcome by using a higher resolution for the light buffer
than for the frame buffer. We have found that 30 to 50 percent ad-
ditional resolution is adequate.

As noted at the end of the previous section, surface based shad-
ing models are inappropriate for homogeneous regions in a volume.
However, it is often useful to have both surface shaded and shad-
owed renderings regardless of whether or not homogeneous regions
are being visualized. To insure that homogeneous regions are not
surface shaded, we simply interpolate between surface shaded and
unshaded using the gradient magnitude. Naturally, regardless of
whether or not a particular sample is surface shaded, it is still mod-
ulated by the light attenuation providing shadows. In practice we
have found that interpolating based on 1� (1� krfk)2 produces
better results, since mid-range gradient magnitudes can still be in-
terpreted as surface features. Figure 11 shows a rendering which
combines surface shading and shadows in such a way. Figure 1
shows a volume rendering using shadows with the light buffer ini-
tialized to simulate a spotlight. Figures 2 and 3 show volume ren-
derings using only surface based shading. Figures 5, 6, and 7 only
use shadows for illumination.

7 Discussion

Using multi-dimensional transfer functions heightens the impor-
tance of densely sampling the voxel data in rendering. With each
new axis in the transfer function, there is another dimension along
which neighboring voxels can differ. It becomes increasingly likely
that the data sample points at the corners of a voxel straddle an
important region of the transfer function (such as a region of high
opacity) instead of falling within it. Thus, in order for the bound-
aries to be rendered smoothly, the distance between view-aligned
sampling planes through the volume must be very small. Most of
the figures in this paper were generated with sampling rates of about
3 to 6 samples per voxel. At this sample rate, frame updates can take
nearly a second for a moderately sized (256�256�128) shaded and
shadowed volume. For this reason, we lower the sample rate during
interaction, and re-render at the higher sample rate once an action
is completed. During interaction, the volume rendered surface will
appear coarser, but the surface size and location are usually read-
ily apparent. Thus, even with lower volume sampling rates during
interaction, the rendered images are effective feedback for guiding
the user in transfer function exploration.

While the triangular classification widget is based on Levoy’s
iso-contour classification function, we have found it necessary to
have additional degrees of freedom, such as a shear. Shearing the
triangle classification along the data value axis, so that higher val-
ues are emphasized at higher gradients, allows us to follow the cen-
ter of some boundaries more accurately. This is a subtle but basic
characteristic of boundaries between a material with a narrow dis-
tribution of data values, and another material with a wide value dis-
tribution. This pattern can be observed in in the boundary between
soft tissue (with a narrow value distribution) and bone (wide value
distribution) of the Visible Male CT, seen in Figure 12. Threshold-
ing the minimum gradient magnitude allows better feature discrim-
ination as can be seen in Figure 2(b).

A benefit of using multi-dimensional transfer functions is the
ability to use a “default” transfer function which is produced with-
out any user interaction. Given our interest in visualizing the
boundaries between materials, this was achieved by assigning opac-
ity to high gradient magnitudes and, in the case of scalar data, low-
magnitude second derivatives, regardless of data value, while vary-
ing hue along the data value. This default transfer function is in-
tended only as a starting point for further modification with the
widgets, but often it succeeds in depicting the main structures of



Figure 11: Volume renderings of the Visible Male CT (frozen)
demonstrating combined surface shading and shadows.
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Figure 12: The soft tissue/bone boundary of the Visible Male CT.
It is necessary to shear the triangular classification widget to follow
the center of this boundary.

the volume, as seen in Figure 13. Other application areas for vol-
ume rendering may need different variables for multi-dimensional
transfer functions, with their own properties governing the choices
for default settings.

While multi-dimensional transfer functions are quite effective
for visualizing material boundaries, we have also found them to
be useful for visualizing the materials themselves. For instance, if
we attempt to visualize the dentin of the Human Tooth CT using a
1D transfer function, we erroneously color the background/enamel
boundary, seen in Figure 14(a). The reason for this can be seen in
Figure 3(a), where the range of data values which define the back-
ground/enamel boundary overlap with the dentin’s data values. We
can easily correct this erroneous coloring with a 2D transfer func-
tion that only gives opacity to lower gradient magnitudes. This can
be seen in Figure 14(b).

A further benefit of dual-domain interaction is the ability to
create feature-specific multi-dimensional transfer functions which
would be extremely difficult to produce by manual placement of
classification widgets. If a feature can be visualized in isolation
with only a very small and accurately placed classification widget,
the best way to place the widget is via dual-domain interaction. This
is the case for visualizing different soft tissues in CT data, such as
the white matter of the brain in the Visible Male CT, shown in Fig-
ure 15.

Dual-domain interaction has utility beyond setting multi-
dimensional transfer functions. Dual-domain interaction also helps
answer other questions about the limits of direct volume rendering
for displaying specific features in the data. For example, the feed-
back in the transfer function domain can show the user whether a
certain feature of interest detected during spatial domain interaction
is well-localized in the transfer function domain. If re-projected
voxels from different positions, in the same feature, map to widely
divergent locations in the transfer function domain, then the feature
is not well-localized, and it may be hard to create a transfer function
which clearly visualizes it. Similarly, if probing inside two distinct
features indicates that the re-projected voxels from both features
map to the same location in the transfer function domain, then it
may be difficult to selectively visualize one or the other feature.



Figure 13: A default transfer function for scalar data applied to the
Chapel Hill CT. Hue varies along the data value axis and opacity
varies along the gradient magnitude axis. A clipping plane reveals
internal structure (right).

(a) A 1D transfer function (b) A 2D transfer function

Figure 14: The dentin of the Human Tooth CT. (a) shows that a
1D transfer function, simulated by assigning opacity to data values
regardless of gradient magnitude, will erroneously color the back-
ground/enamel boundary. A 2D transfer function, shown in (b) can
avoid assigning opacity to the range of gradient magnitudes that
define this boundary.

Figure 15: The brain of the Visible Male CT. The transfer func-
tions were created using dual-domain interaction. A detail region
shows how small the region that identifies this subtle feature is in
the transfer function domain.

8 Future Work

One unavoidable drawback to using multi-dimensional transfer
functions is the increased memory consumption needed to store all
the transfer function variables at each voxel sample point. Future
work can expand the dataset size by using parallel hardware render-
ing methods [20]. Surface based shading also has a dramatic impact
on the data set size since we must store pre-computed normals, this
requires an additional 4 bytes per-sample.

Using shadows for illumination is advantageous since it does not
require a surface normal, thus eliminating the need for a normal
volume. New shading models based on this approach might have
the potential to create even more realistic and informative imagery.
As future generations of graphics hardware provide even richer fea-
ture sets, it should soon be possible to create and implement better
approximations of light transport through volumetric media at in-
teractive frame rates.

Another area of future research would be to explore methods
of surface normal generation using on-the-fly post-classification
gradient estimation. This is a non-trivial problem since the trans-
fer function can introduce very high frequencies or discontinuities,
which can be problematic for creating normals that produce smooth
shading. Such a method would have the potential to provide robust
normals for surface shading multivariate volume visualizations.

Direct manipulation widgets and spatial interaction techniques
lend themselves well to immersive environments. We would like to
experiment with dual-domain interaction in a stereo, tracked, envi-
ronment. We speculate that an immersive environment could make
interacting with a 3D transfer function more natural and intuitive.
We would also like to perform usability studies on our direct ma-
nipulation widgets and dual-domain interaction technique, as well
as perceptual studies on 2D and 3D transfer functions for volume
rendering.



9 Summary

This paper demonstrates the importance of multi-dimensional trans-
fer functions for direct volume rendering applications. We present
several examples for both scalar and more general multivariate
datasets. We also identify the importance of interactive techniques.
We introduce new interaction modalities and tools to make the pro-
cess of specifying a high quality transfer function efficient and ef-
fective. These tools guide the user based on dataset specific infor-
mation. We also present a number of methods for volume shading,
including a novel technique for generating volumetric shadows.

10 Acknowledgments

The authors would like to thank Al McPherson from the ACL at
LANL for fruitful and provocative conversations about volumet-
ric shadows. This research was funded by grants from the Depart-
ment of Energy (VIEWS 0F00584), the National Science Founda-
tion (ASC 8920219, MRI 9977218, ACR 9978099), and the Na-
tional Institutes of Health National Center for Research Resources
(1P41RR12553-2). We would also like to thank NVIDIA, ATI and
sgi for their making their latest generations of hardware available.

References

[1] Chandrajit L. Bajaj, Valerio Pascucci, and Daniel R. Schikore.
The Contour Spectrum. In Proceedings IEEE Visualization
1997, pages 167–173, 1997.

[2] Uwe Behrens and Ralf Ratering. Adding Shadows to a
Texture-Based Volume Renderer. In 1998 Volume Visualiza-
tion Symposium, pages 39–46, 1998.

[3] Lawrence D. Bergman, Bernice E. Rogowitz, and Lloyd A.
Treinish. A Rule-based Tool for Assisting Colormap Se-
lection. In Proceedings Visualization 1995, pages 118–125.
IEEE, October 1995.

[4] Brian Cabral, Nancy Cam, and Jim Foran. Accelerated Vol-
ume Rendering and Tomographic Reconstruction Using Tex-
ture Mapping Hardware. In ACM Symposium On Volume Vi-
sualization, 1994.

[5] D. Brookshire Conner, Scott S. Snibbe, Kenneth P. Herndon,
Daniel C. Robbins, Robert C. Zeleznik, and Andries van Dam.
Three-Dimensional Widgets. In Proceedings of the 1992 Sym-
posium on Interactive 3D Graphics, pages 183–188, 1992.

[6] C.Rezk-Salama, K.Engel, M. Bauer, G. Greiner, and T. Ertl.
Interactive Volume Rendering on Standard PC Graphics Hard-
ware Using Multi-Textures and Multi-Stage Rasterization.
In Siggraph/Eurographics Workshop on Graphics Hardware
2000, 2000.

[7] A. Cumani, P. Grattoni, and A. Guiducci. An edge-based de-
scription of color images. GMIP, 53(4):313–323, 1991.

[8] Silvano Di Zenzo. A Note on the Gradient of a Multi-
Image. Computer Vision, Graphics, and Image Processing,
33(1):116–125, Jan 1986.

[9] David Ebert, Christopher Morris, Penny Rheingans, and Terry
Yoo. Designing Effective Transfer Functions for Volume Ren-
dering from Photographic Volumes. IEEE TVCG, (to appear)
2002.

[10] Klaus Engel, Martin Kraus, and Thomas Ertl. High-
Quality Pre-Integrated Volume Rendering Using Hardware-
Accelerated Pixel Shading. In Siggraph/Eurographics Work-
shop on Graphics Hardware 2001, 2001.

[11] Allen Van Gelder and Kwansik Kim. Direct Volume Render-
ing with Shading via Three-Dimensional Textures. In ACM
Symposium On Volume Visualization, pages 23–30, 1996.

[12] Taosong He, Lichan Hong, Arie Kaufman, and Hanspeter
Pfister. Generation of Transfer Functions with Stochastic
Search Techniques. In Proceedings IEEE Visualization 1996,
pages 227–234, 1996.

[13] Wolfgang Heidrich, Rudiger Westermann, Hans-Peter Seidel,
and Thomas Ertl. Applications of Pixel Textures in Visual-
ization and Realistic Image Synthesis. In Proceedings of the
1999 Symposium on Interacive 3D Graphics, 1999.

[14] Kenneth P. Hernandon and Tom Meyer. 3D Widgets for Ex-
ploratory Scientific Visualization. In Proceedings of UIST ’94
(SIGGRAPH), pages 69–70. ACM, November 1994.
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